Finite-size scalings of the Euclidean $|\varphi|^4$ model at and above the critical dimension

Jiwoon Park

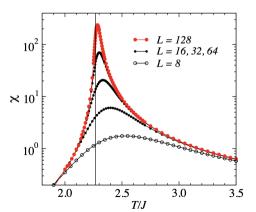
11th November, 2025, Rigo. Stat. Phys. 2025

- ightharpoonup P., Torus scaling limits and the plateau of the critical weakly coupled $|\varphi|^4$ model in $d \geq 4$, arXiv:2511.06321 (2025)
- P., A Rernomalisation Group Map for Short- and Long-ranged Weakly Coupled $|\varphi|^4$ Models in $d \ge 4$ at and Above the Critical Point, arXiv:2511.03495 (2025)
- **E.** Michta, P., G. Slade, Boundary conditions and universal finite-size scaling for the hierarchical $|\varphi|^4$ model in dimensions 4 and higher, *CPAM* (2023)
- ightharpoonup P., G. Slade, Two-point function plateaux for the hierarchical $|arphi|^4$ model in dimensions 4 and higher, AHP (2024)
- Y. Liu, P., G. Slade, Universal finite-size scaling in high-dimensional critical phenomena, arXiv:2412.08814 (2024)

Finite-size scaling for a model of a magnet

For total magnetisation $M = \sum_{x} \sigma_{x}$,

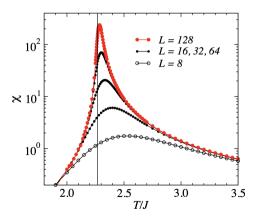
$$\chi^{\mathrm{tr}} = rac{1}{\mathrm{Vol}} ig(\langle M^2
angle - \langle |M|
angle^2 ig)$$



Finite-size scaling for a model of a magnet

For total magnetisation $M = \sum_{x} \sigma_{x}$,

$$\chi^{\mathsf{tr}} = \frac{1}{\mathsf{Vol}} (\langle M^2 \rangle - \langle |M| \rangle^2)$$



- ► Height of the peak?
- ▶ Width of the peak?
- ► Shift of the critical point?

[Sandvik, Computational Studies of Quantum Spin Systems]

Definitions and motivations

- $ightharpoonup \Lambda_N = \{1, \dots, L^N\}^d$: d-dimensional lattice box (with periodic boundary condition)
- $\Omega_N = \{\phi : \Lambda_N \to \mathbb{R}^n\}$: configuration space
- ▶ Coupling constants $g > 0, \ \nu \in \mathbb{R}$

Definition

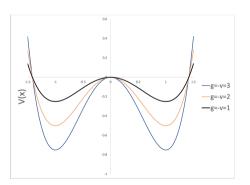
The $|\phi|^4$ model with coupling constants g, ν is the probability measure on Ω_N given by

$$\langle F(\phi)
angle_{g,
u,N} = rac{1}{Z_{N,g,
u}} \int_{\Omega_N} d\phi \, F(\phi) \exp\left(-rac{1}{2}(\phi,-\Delta\phi) - rac{1}{2}
u \sum_{\mathsf{x}} |\phi_{\mathsf{x}}|^2 - rac{1}{4}g \sum_{\mathsf{x}} |\phi_{\mathsf{x}}|^4
ight).$$

- $ightharpoonup d \geq 4 = d_c$, the upper critical dimension
- ▶ When $g \ll 1$, then a weakly-coupled $|\phi|^4$ -model

$|\phi|^4$ model

$$\langle F(\phi)\rangle_{g,\nu,N} = \frac{\int_{\Omega_N} d\phi F(\phi) e^{-\frac{1}{2}(\phi,-\Delta\phi)} e^{-\sum_X V_X(\phi)}}{Z_{g,\nu,N}}, \quad V_X(\phi) = \frac{\nu}{2} |\phi_X|^2 + \frac{g}{4} |\phi_X|^4$$



▶ Under the limit $g = -\nu \to \infty$, converges to the O(n) model

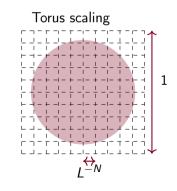
Infrared scaling limits

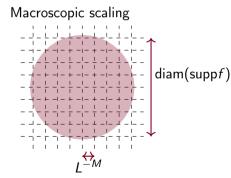
▶ Torus scaling limit: for $f \in C^{\infty}(\mathbb{T}^d)$, take $f_N(x) = f(L^{-N}x)$,

$$\lim_{N\to\infty}c_N(f_N,\phi)=?$$

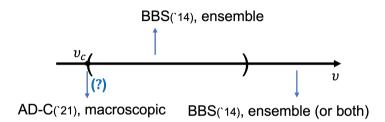
▶ Macroscopic scaling limit: for $f \in C^{\infty}(\mathbb{R}^d)$, take $f_M(x) = f(L^{-M}x)$,

$$\lim_{M\to\infty}\lim_{N\to\infty}c_M(f_M,\phi)=?$$





Gaussian scaling limits



- ► How are [BBS '14] and [AD-C '21] different?
- ▶ What is the torus scaling limit at the critical point?

Plateau: examples

Theorem [Liu, Panis, Slade '24]

For the Ising model in d > 4 in a system of size $|\Lambda| = V$ and $\beta_* = \beta_c - c|\Lambda|^{-1/2}$,

$$\langle \sigma_0 \sigma_x \rangle_{\beta_*, \Lambda} \simeq \underbrace{\frac{1}{|x|^{d-2}}}_{\text{poly decay}} + \underbrace{\frac{1}{V^{\frac{1}{2}}}}_{\text{plateau}}$$

Theorem [Liu, Slade '24]

For the lattice trees and animals in d > 8 in a system of size $|\Lambda| = V$ and $p_* = p_c - c|\Lambda|^{-1/2}$.

$$\mathbb{P}_{p_*,\Lambda}(0\leftrightarrow x)symp rac{1}{|x|^{d-2}}+rac{1}{V^{rac{3}{4}}}$$

Plateau: examples

Theorem [Liu, Panis, Slade '24]

For the Ising model in d > 4 in a system of size $|\Lambda| = V$ and $\beta_* = \beta_c - c|\Lambda|^{-1/2}$,

$$\langle \sigma_0 \sigma_x \rangle_{\beta_*, \Lambda} \simeq \underbrace{\frac{1}{|x|^{d-2}}}_{\text{poly decay}} + \underbrace{\frac{1}{V^{\frac{1}{2}}}}_{\text{plateau}}$$

Theorem [Liu, Slade '24]

For the lattice trees and animals in d>8 in a system of size $|\Lambda|=V$ and $p_*=p_c-c|\Lambda|^{-1/2}$, $\mathbb{P}_{p_*,\Lambda}(0\leftrightarrow x)\asymp \frac{1}{|x|^{d-2}}+\frac{1}{\sqrt{\frac{3}{2}}}$

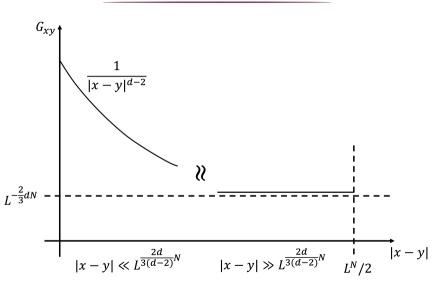
$$_{*,\Lambda}(0\leftrightarrow x)\asymp rac{1}{|x|^{d-2}}+rac{1}{V^{rac{3}{4}}}$$

Theorem [Hutchcroft, Michta, Slade '23]

For the Bernoulli percolation with $d \ge 11$ in a system of size $|\Lambda| = V$.

$$\mathbb{P}_{p_c,\Lambda}(0\leftrightarrow x)\asymp \frac{1}{|x|^{d-2}}+\frac{1}{V^{\frac{2}{3}}}$$

Plateau: Bernoulli percolation



Main results

Critical point of the $|\phi|^4$ model, d > 4

▶ Natural injection $i_N : \Lambda_N \to \mathbb{T}^d$

 $f_N(x) = f(i_N(x))/|\Lambda_N|$

- ▶ $f \in C^{\infty}(\mathbb{T}^d; \mathbb{R}^n)$, let $f_N : \Lambda_N \to \mathbb{R}^n$ be the discretisation given

Critical point of the $|\phi|^4$ model, d > 4

- ▶ Natural injection $i_N : \Lambda_N \to \mathbb{T}^d$
- ▶ $f \in C^{\infty}(\mathbb{T}^d; \mathbb{R}^n)$, let $f_N : \Lambda_N \to \mathbb{R}^n$ be the discretisation given $f_N(x) = f(i_N(x))/|\Lambda_N|$
- $lack f = \int_{\mathbb{T}^d} f(x) dx, \ ar f_N = rac{1}{|\Lambda_N|} \sum_x f_N(x)$

Theorem (BBS'14 for d=4, P'25⁺ for $d\geq 5$)

Let $d \ge 4$, g be sufficiently small. Then there exist $\nu_c \equiv \nu_c(g)$ such that, for some sequence $(\epsilon_k, \epsilon'_k) \to (0, 0)$.

$$\lim_{N\to\infty} \left\langle e^{(\phi,f_N)/L^{Nd/2}} \right\rangle_{g,\nu_c+\epsilon_k,N} := \mathbf{WN} \left[e^{(\epsilon_k')^{-1/2}(\psi,f)} \right] = \exp\left(\frac{1}{2\epsilon_k'}(f,f)\right).$$

WN is the White noise measure on \mathbb{T}^d , i.e., absence of long range order

Critical point of the $|\phi|^4$ model, d > 4

Theorem (BBS'14 for d = 4, P'25⁺ for $d \ge 5$)

Let $d \ge 4$, g be sufficiently small. Then there exist $\nu_c \equiv \nu_c(g)$ such that, for some sequence $(\epsilon_k, \epsilon_k') \to (0, 0)$,

$$\lim_{N\to\infty} \left\langle e^{(\phi,f_N)/L^{Nd/2}} \right\rangle_{g,\nu_c+\epsilon_k,N} := \mathbf{WN} \left[e^{(\epsilon_k')^{-\mathbf{1}/2}(\psi,f)} \right] = \exp\left(\frac{1}{2\epsilon_k'}(f,f)\right).$$

The finite-volume susceptibility is defined as $\chi_{g,\nu,N} = \frac{1}{|\Lambda_N|} \langle (\sum_x \phi_x)^2 \rangle_{g,\nu,N}$.

Corollary

Under the same assumptions, $\chi_{g,\nu,\infty} = \lim_{N\to\infty} \chi_{g,\nu,N}$ exists and

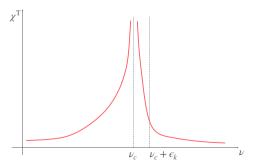
$$\chi_{g,
u_c+\epsilon_k,\infty}=rac{1}{\epsilon_k'} o\infty \qquad ext{as} \qquad \epsilon_k o 0.$$

Critical point of the $|\phi|^4$ model, $d \geq 4$

Corollary

Under the same assumptions, $\chi_{g,\nu,\infty} = \lim_{N\to\infty} \chi_{g,\nu,N}$ exists and

$$\chi_{g,
u_c+\epsilon_k,\infty}=rac{1}{\epsilon_k'} o\infty \qquad ext{as} \qquad \epsilon_k o 0.$$



Torus scaling limit of $|\phi|^4$ model, $d \ge 5$

Theorem (P'25⁺)

Let $d \ge 5$, g be sufficiently small, $b_N = g^{-1/4} L^{-dN/4}$ and $c_N = L^{-\frac{d-2}{2}N}$.

1. There exists $\gamma = 1 + O(g) > 0$ such that

$$\lim_{N\to\infty} \left\langle e^{(\phi,f_N)/b_N} \right\rangle_{\sigma,\nu_{c},N} = \mathbf{Q} \left[e^{\gamma(\psi,f)} \right] \propto \int e^{\gamma y \cdot \bar{f}} e^{-|y|^4} dy.$$

2. There exists $\beta = 1 + O(g) > 0$ such that

$$\lim_{N \to \infty} \left\langle e^{(\phi, (f_N - \bar{f}_N))/c_N} \right\rangle_{\vec{e}, \nu_c, N} = \mathsf{GFF}_0 \left[e^{\beta(\psi, f - \bar{f})} \right].$$

Torus scaling limit of $|\phi|^4$ model, d > 5

Theorem (P'25⁺)

$$b_N = g^{-1/4} L^{-dN/4}$$
 and $c_N = L^{-\frac{d-2}{2}N}$.

- 1. $\lim_{N\to\infty} \left\langle e^{(\phi,f_N)/b_N} \right\rangle_{g,\nu_c,N} = \mathbf{Q}\left[e^{\gamma(\psi,f)}\right]$
- 2. $\lim_{N\to\infty}\left\langle e^{(\phi,f_N-\bar{f}_N)/c_N}
 ight
 angle_{g,
 u_c,N}=\mathbf{GFF}_0\left[e^{\beta(\psi,f-\bar{f})}
 ight].$

Torus scaling limit of $|\phi|^4$ model, $d \ge 5$

Theorem (P'25⁺)

$$b_N = g^{-1/4} L^{-dN/4}$$
 and $c_N = L^{-\frac{d-2}{2}N}$.

- 1. $\lim_{N\to\infty} \left\langle e^{(\phi,f_N)/b_N} \right\rangle_{g,\nu_c,N} = \mathbf{Q}\left[e^{\gamma(\psi,f)}\right] \propto \int e^{\gamma y \cdot \bar{f}} e^{-|y|^4} dy$.
- $\text{2. } \lim_{N \to \infty} \left\langle e^{(\phi,f_N \bar{f}_N)/c_N} \right\rangle_{g,\nu_c,N} = \text{GFF}_0 \left[e^{\beta(\psi,f \bar{f})} \right].$

Interpretation

- ▶ If $Y \sim \text{``}e^{-|y|^4}$ ", then $Y\mathbf{1} \sim \mathbf{Q}$.
- ► Thus on a finite-volume torus,

$$\phi$$
 " \sim " $\gamma b_N Y \mathbf{1} + \beta c_N GFF$,

Since $b_N \gg c_N$, we see that there is a scale hierarchy where ϕ is constant on the scale of the torus and the GFF on microscopic scales.

Torus scaling limit of $|\phi|^4$ model, d=4

Theorem (P'25⁺)

Let d = 4, g be sufficiently small, $b_N = N^{1/4}L^{-N}$ and $c_N = L^{-N}$.

1. There exists $\gamma > 0$, independent of g, such that

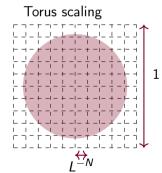
$$\lim_{N\to\infty} \left\langle e^{(\phi,f_N)/b_N} \right\rangle_{\sigma,\nu,\rho,N} = \mathbf{Q} \left[e^{\gamma(\psi,f)} \right] \propto \int e^{\gamma y \cdot \bar{f}} e^{-|y|^4} dy.$$

2. There exists $\beta = 1 + O(g) > 0$ such that

$$\lim_{N \to \infty} \left\langle e^{(\phi,(f_N - \bar{f}_N))/c_N} \right\rangle_{g,\nu_c,N} = \mathsf{GFF}_0 \left[e^{\beta(\psi,f - \bar{f})} \right].$$

Comparison with previous results

- ► Macroscopic scaling limit
 - ▶ Gaussian limit in $d \ge 4$ and n = 1: Aizenman, Duminil-Copin('21), Fröhlich('81), Aizenman('82)
- ► Torus scaling limit
 - ▶ Weakly coupled, any $n \ge 1$
 - ► Scale hierarchy ϕ " \sim " $b_N Y \mathbf{1} + c_N GFF$
 - ► Competition between the 'plateau effect' and the Gaussian limit





Comparison with previous results

With
$$b_N = N^{1/4} L^{-N}$$
 for $d = 4$, $b_N = g^{-1/4} L^{-dN/4}$ for $d > 4$ $c_N = L^{-\frac{d-2}{2}N}$), suppose
$$\psi \text{ `` = '' } \gamma b_N Y \mathbf{1} + \beta c_N \text{GFF}$$

Corollary (Macroscopic limit for
$$\psi$$
)

For $f \in C_c^{\infty}(\mathbb{R}^d)$, let $f^M(x) = f(L^M x)$. Then

$$\lim_{N\to\infty}\lim_{M\to\infty}\left\langle \mathrm{e}^{L^M(\psi,f_N^M)/c_N}\right\rangle = \exp\left(\frac{1}{2}\beta(f,(-\Delta)^{-1}f)\right).$$

Comparison with previous results

With
$$b_N = N^{1/4} L^{-N}$$
 for $d = 4$, $b_N = g^{-1/4} L^{-dN/4}$ for $d > 4$ $c_N = L^{-\frac{d-2}{2}N}$), suppose ψ " = " $\gamma b_N Y \mathbf{1} + \beta c_N \text{GFF}$

Corollary (Macroscopic limit for ψ)

For $f \in C_c^{\infty}(\mathbb{R}^d)$, let $f^M(x) = f(L^M x)$. Then

$$\lim_{N\to\infty}\lim_{M\to\infty}\left\langle e^{L^M(\psi,f_N^M)/c_N}\right\rangle=\exp\Big(\frac{1}{2}\beta(f,(-\Delta)^{-1}f)\Big).$$

- ► Gives an covariance structure of the macroscopic scaling limit
- ▶ We did not prove that ϕ " \sim " $\gamma b_N Y \mathbf{1} + \beta c_N \text{GFF}$ is uniform in M, but expected to be true.

Plateau

Theorem [Park, 25⁺]

Let d > 4, g > 0 and $\nu = \nu_c(g)$.

Let
$$d>4$$
, $g>0$ and $u=
u_c(g)$.

If $|x_N| o\infty$ with $|x_N|\ll L^{rac{d}{2(d-2)}N}$, then

If
$$|\mathbf{v}_{u}| \gg L^{\frac{d}{2(d-2)}N}$$
 then

$$\langle \phi_0 \phi_{\mathsf{x}_{\mathsf{N}}} \rangle_{\mathsf{g},\nu} \sim \frac{c_1}{|\mathsf{x}_{\mathsf{N}}|^{d-2}}$$

If
$$|x_N| \gg L^{\frac{d}{2(d-2)}N}$$
, then
$$\frac{\langle \varphi_0 \varphi_{X_N/g}, \nu^{-d} \rangle_{|x_N|}|_{d-2}}{\langle \varphi_0 \varphi_{X_N} \rangle_{g,\nu} \sim c_2 g^{-1/4} L^{-dN/2}}$$

Let d=4, g>0 and $\nu=\nu_c(g)$.

Let
$$a=$$
 4, $g>$ 0 and $u=
u_c(g)$

▶ If
$$|x_N| \to \infty$$
 with $|x_N| \ll N^{-\frac{1}{4}} L^{\frac{d}{2(d-2)}N}$, then $\langle \phi_0 \phi_{x_N} \rangle_{g,\nu} \sim \frac{c_1}{|x_N|^{d-2}}$
▶ If $|x_N| \gg N^{-\frac{1}{4}} L^{\frac{d}{2(d-2)}N}$, then

If
$$|x_N|\gg N$$
 4 $L^{2(\sigma-2)}$, then $\langle\phi_0\phi_{\mathsf{x}_N}
angle_{\mathsf{g},
u}\sim c_2N^{1/2}L^{-dN/2}$

Plateau

Theorem [Park, 25^+ , d > 4]

▶ If
$$|x_N| \to \infty$$
 with $|x_N| \ll L^{\frac{d}{2(d-2)}N}$, then $\langle \phi_0 \phi_{x_N} \rangle_{g,\nu} \sim \frac{c_1}{|x_N|^{d-2}}$

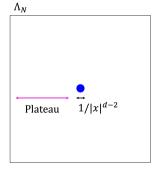
If $|x_N| \gg L^{\frac{d}{2(d-2)}N}$, then

$$\langle \phi_0 \phi_{\mathsf{x}_{\mathsf{N}}} \rangle_{\mathsf{g},\nu} \sim c_2 \mathsf{g}^{-1/4} \mathsf{L}^{-dN/2}$$

Shows a plateau:

$$(1) L^{\frac{d}{2(d-2)}N} \ll L^N$$

(2) $c_2 g^{-1/4} L^{-dN/2}$ is a constant



Conjectures/Prospectives

Related results:

▶ Presence of the critical window and a scaling profile

The same picture would hold models in the same universality class:

- 1. O(n) lattice spin models in $d \ge 4$ (n = 1: Ising model, n = 2: XY model, n = 3: Heisenberg model)
- 2. (Strictly or weakly) Self-avoiding walks

There is a problem with the boundary condition:

- Occurrence of the pseudocritical point under FBC
- Appearance of the same scaling profile about the pseudocritical point, just with different constants

Case of convex potentials

Spin systems with convex potential

- $ightharpoonup \Omega_N = \{ \varphi : \Lambda_N \to \mathbb{R}^n \} :$ configuration space (For convenience, n = 1)
- ightharpoonup Convex function $W: \mathbb{R}^n \to \mathbb{R}$

Definition

We define the spin system with potential W as a probability measure on Ω_{N} given by

$$\langle F(\phi) \rangle_{W,N} = rac{1}{Z_{W,N}} \int_{\Omega_N} d\phi \, F(\phi) \exp\left(-rac{1}{2}(\phi, -\Delta\phi) - W(\varphi)\right) \prod_x d\phi, \qquad \phi \in \Omega_N.$$

Methods for convex potentials

A corollary of the Prèkopa-Leindler inequality

If $D^2S \geq 0$ and μ is some probability measure, then $\mu*e^{-S}$ is log-concave, i.e., if $\zeta \sim \mu$, then

$$\varphi \mapsto -\log \mu[e^{-S(\varphi+\zeta)}], \qquad \varphi \in \Omega_N$$

is a convex function.

Brascamp-Lieb inequality

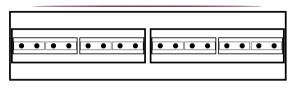
If W is even and $D^2W(\phi) \geq Q > 0$ for a quadratic form Q, uniformly in ϕ , then for any $h \in \Omega_N$,

$$\langle e^{(h,\phi)} \rangle_{W,N} \leq \exp\left(\frac{1}{2}(h,(-\Delta+Q)^{-1}h)\right)$$

- ▶ In particular, if $g, \nu > 0$, then the BL inequality implies $\langle \phi_0 \phi_x \rangle_{g,\nu,\infty} \leq O(e^{-\mu|x|})$.
- ▶ More detailed information can be obtained by Helffer-Sjörstrand representation

RG method

Idea of renormalisation group



CLT and RG:

- Let $(X_n)_{n\geq 0}$ be i.i.d., $\mathbb{E}[X_n^2]=1$, $\mathbb{E}[X_n]=0$, $X_n\sim e^{-\nu(x)}/Z_{\nu}$, considered as 'spin chain'
- ► Let $Y_{i,n} = (X_{n2^{j+1}} + \cdots + X_{(n+1)2^{j}})/2^{j}$, then

$$Y_{i,n} \sim e^{-v_j(x)}/Z_i = (e^{-v}/Z_v)^{*2^j}$$

- ▶ According to the CLT, $v_j(x) \to \frac{1}{2}x^2$ as $j \to \infty$, so averaged field improves convexity.
- ▶ Reflecting on the proof of the CLT, this process can be shown inductively.

$$\langle F(\phi)
angle_{g,
u,N} = rac{\int_{\Omega_N} d\phi F(\phi) e^{-rac{1}{2}(\phi,-\Delta\phi)} e^{-\sum_x V_x(\phi)}}{Z_{g,
u,N}}, \quad V_x(\phi) = rac{
u}{2} |\phi_x|^2 + rac{g}{4} |\phi_x|^4$$

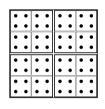
 $\mathcal{B}_j = \text{set of boxes of } L^j \text{ points} = \text{set of } j\text{-boxes}$

$$\langle F(\phi) \rangle_{g,\nu,N} = rac{\int_{\Omega_N} d\phi F(\phi) e^{-rac{1}{2}(\phi,-\Delta\phi)} e^{-\sum_X V_X(\phi)}}{Z_{g,\nu,N}}, \quad V_X(\phi) = rac{
u}{2} |\phi_X|^2 + rac{g}{4} |\phi_X|^4$$

$$\mathcal{B}_j = \text{set of boxes of } L^j \text{ points} = \text{set of } j\text{-boxes}$$

▶ Step 1: Regroup lattice field $\phi(B) = (\phi_x)_{x \in B}$ for each block $B \in \mathcal{B}_j$, compute the law of each $\phi(B)$

$$\langle F(\phi) \rangle_{g,\nu,N} = \frac{\int_{\Omega_N} d\phi F(\phi) e^{-\frac{1}{2}(\phi,-\Delta\phi)} e^{-\sum_x V_X(\phi)}}{Z_{g,\nu,N}}, \quad V_X(\phi) = \frac{\nu}{2} |\phi_X|^2 + \frac{g}{4} |\phi_X|^4$$



$$\mathcal{B}_j = \text{set of boxes of } L^j \text{ points} = \text{set of } j\text{-boxes}$$

- ▶ Step 1: Regroup lattice field $\phi(B) = (\phi_x)_{x \in B}$ for each block $B \in \mathcal{B}_j$, compute the law of each $\phi(B)$
- ▶ Step 2: Compute the *j*-scale interaction of $(\phi(B))_{B \in \mathcal{B}_i}$ that replaces $(\phi, -\Delta\phi)$

$$\phi \sim \mathcal{N}(0, (-\Delta + \mu^2)^{-1}) \qquad \Rightarrow \qquad Z_{g,\nu,N} \propto \lim_{\mu \to 0} \mathbb{E}^{\phi}[e^{-\sum_{x} V_{x}(\phi)}]$$

Lemma

Suppose $\zeta_1 \sim \mathcal{N}(0, C_1)$, $\zeta_2 \sim \mathcal{N}(0, C_2)$ are independent. Then $\zeta_1 + \zeta_2 \sim \mathcal{N}(0, C_1 + C_2)$.

$$\phi \sim \mathcal{N}(0, (-\Delta + \mu^2)^{-1}) \qquad \Rightarrow \qquad Z_{\mathsf{g}, \nu, \mathsf{N}} \propto \lim_{\mu \to 0} \mathbb{E}^{\phi}[\mathsf{e}^{-\sum_{\mathsf{x}} V_{\mathsf{x}}(\phi)}]$$

Lemma

Suppose $\zeta_1 \sim \mathcal{N}(0, C_1)$, $\zeta_2 \sim \mathcal{N}(0, C_2)$ are independent. Then $\zeta_1 + \zeta_2 \sim \mathcal{N}(0, C_1 + C_2)$.

ightharpoonup Suppose there exist $\Gamma_1, \dots, \Gamma_N$ such that

$$(-\Delta + \mu^2)^{-1} = \sum_{i=1}^{N} \Gamma_j + \mu^{-2} Q_N$$

and $\zeta_j \sim \mathcal{N}(0, \Gamma_j)$ is the 'scale j fluctuation' of the massive GFF. Let $\hat{\zeta} \sim \mathcal{N}(0, \mu^{-2}Q_N)$.

Reformulation using Gaussian integral

$$\phi \sim \mathcal{N}(0, (-\Delta + \mu^2)^{-1}) \qquad \Rightarrow \qquad Z_{g,\nu,N} \propto \lim_{\mu \to 0} \mathbb{E}^{\phi}[\mathrm{e}^{-\sum_{\mathsf{x}} V_{\mathsf{x}}(\phi)}]$$

Lemma

Suppose $\zeta_1 \sim \mathcal{N}(0, C_1)$, $\zeta_2 \sim \mathcal{N}(0, C_2)$ are independent. Then $\zeta_1 + \zeta_2 \sim \mathcal{N}(0, C_1 + C_2)$.

ightharpoonup Suppose there exist $\Gamma_1, \dots, \Gamma_N$ such that

$$(-\Delta + \mu^2)^{-1} = \sum_{j=1}^{N} \Gamma_j + \mu^{-2} Q_N$$

and $\zeta_j \sim \mathcal{N}(0, \Gamma_j)$ is the 'scale j fluctuation' of the massive GFF. Let $\hat{\zeta} \sim \mathcal{N}(0, \mu^{-2}Q_N)$.

▶ By the lemma, $\zeta_1 + \cdots + \zeta_N + \hat{\zeta} = d^d \phi$, so

$$Z_{g,\nu,N} \propto \lim_{\mu o 0} \mathbb{E}^{\hat{\zeta}} \mathbb{E}^{\zeta_N} \cdots \mathbb{E}^{\zeta_1} \Big[\exp(-\sum_{x} V_x (\zeta_1 + \cdots + \zeta_N + \hat{\zeta})) \Big].$$

Given
$$(\zeta_j)_{j=1}^N \sim \mathcal{N}(0, \Gamma_1 \oplus \cdots \oplus \Gamma_N)$$
 with $\sum_j \Gamma_j = (-\Delta + \mu^2)^{-1}$,

$$Z_{g,
u,N} = \lim_{\mu o 0} \mathbb{E}^{\hat{\zeta}} \mathbb{E}^{\zeta_N} \cdots \mathbb{E}^{\zeta_1} [\exp(-\sum V_x(\zeta_1 + \cdots + \zeta_N))].$$

 \blacktriangleright For each j, the renormalised potential is defined as a partial expectation

$$e^{-U_j(arphi)} = \mathbb{E}^{\zeta_j} \cdots \mathbb{E}^{\zeta_1} \Big[\exp(-\sum_{i} V_{\scriptscriptstyle \mathcal{X}} (arphi + \zeta_1 + \cdots + \zeta_j)) \Big]$$

Given
$$(\zeta_i)_{i=1}^N \sim \mathcal{N}(0, \Gamma_1 \oplus \cdots \oplus \Gamma_N)$$
 with $\sum_i \Gamma_i = (-\Delta + \mu^2)^{-1}$,

$$Z_{g,
u,N} = \lim_{\mu o 0} \mathbb{E}^{\hat{\zeta}} \mathbb{E}^{\zeta_N} \cdots \mathbb{E}^{\zeta_1} [\exp(-\sum V_x (\zeta_1 + \cdots + \zeta_N))].$$

 \triangleright For each j, the renormalised potential is defined as a partial expectation

$$e^{-U_j(\varphi)} = \mathbb{E}^{\zeta_j} \cdots \mathbb{E}^{\zeta_1} \Big[\exp(-\sum_{x} V_x(\varphi + \zeta_1 + \cdots + \zeta_j)) \Big]$$

$$\Rightarrow Z_{g,\nu,N} = \lim_{\mu \to 0} \mathbb{E}^{\hat{\zeta}} \underbrace{\mathbb{E}^{\zeta_N} \cdots \mathbb{E}^{\zeta_{j+1}}}_{\text{scale } j \text{ interaction}} \left[\underbrace{\exp(-U_j(\zeta_{j+1} + \cdots + \zeta_N + \hat{\zeta}))}_{\text{scale } j \text{ potential function}} \right]$$

$$\mathrm{e}^{-\mathit{U}_{j}(\phi)} = \mathbb{E}^{\zeta_{j}} \cdots \mathbb{E}^{\zeta_{1}} \Big[\exp(-\sum_{\mathsf{x}} \mathit{V}_{\mathsf{x}}(\phi + \zeta_{1} + \cdots + \zeta_{j})) \Big]$$

$$e^{-U_j(\phi)} = \mathbb{E}^{\zeta_j} \cdots \mathbb{E}^{\zeta_1} \Big[\exp(-\sum_{i} V_x(\phi + \zeta_1 + \cdots + \zeta_j)) \Big]$$

Goal: Approximate U_i using 'local' polynomials

$$U_j(\phi) = u_j |\Lambda_N| + \sum_{j=1}^{n} \frac{1}{2} \nu_j |\phi_x|^2 + \frac{1}{4} g_j |\phi_x|^4 + \cdots$$

and analyse the stability of the dynamical system $(u_j, \nu_j, g_j)_{j \geq 0}$.

Theorem

If $\nu = \nu_c$, there exists vacuum energy u_j , a 'local' polynomial $V_j(\varphi)$ and a collection of smooth function $(K_j(X):X\subset \mathcal{B}_j)$ such that

$$e^{-U_j(\phi)} = e^{-u_j|\Lambda|} e^{-\sum_x V_{j,x}(\phi)} \mathcal{E}_{xp}(K_j)(\phi)$$

and

$$||V_j|| = O(\epsilon_j), \qquad ||K_j|| = O(\epsilon_j^3)$$

for some $\epsilon_j \to 0$ and suitable norms on function spaces.

- \triangleright V_i is a low order approximation of U_i as a local polynomial
- $ightharpoonup K_j$ is a remainder term and $\mathcal{E}xp$ is a cluster expansion of scale j polymers given by

$$\mathcal{E}$$
xp $(K) = 1 + \sum_{X \subset \mathcal{B}_i, \ X
eq \emptyset} K_j(X)$

 $= \lim_{u \to 0} \int_{\mathbb{D}_{R}} \left(e^{-\frac{1}{4}L^{dN}g_{N}|y|^{4} - \frac{1}{2}L^{dN}\nu_{N}|y|^{2}} + K_{N}(\Lambda_{N}, y\mathbf{1}) \right) e^{-\frac{L^{dN}}{2\mu^{2}}|y|^{2}} dy$

Finite-size susceptibility can be computed as the following:

Finite-size susceptibility can be computed as the following:

$$igspace Z_{g,
u,N} \propto \lim_{\mu \to 0} \mathbb{E}^{\hat{\zeta}}[e^{-U_N}]$$
 with $\hat{\zeta} \sim \mathcal{N}(0,\mu^2 Q_N)$, and $\hat{\zeta} = Y'\mathbf{1}$ for $Y' \sim \mathcal{N}(0,\mu^2 L^{-dN})$,

$$egin{align} Y' &\sim \mathcal{N}\left(0, \mu^2 L^{-dN}
ight), \ Z_{g,
u_c,N} &\propto \lim_{\mu o 0} \int_{\mathbb{R}^n} (e^{-L^{dN} V_N(y)} + K_N(\Lambda_N,y\mathbf{1})) e^{-rac{L^{dN}}{2\mu^2}|y|^2} dy \ &= \lim_{\mu o 0} \int_{\mathbb{R}^n} \left(e^{-rac{1}{4} L^{dN} g_N|y|^4 - rac{1}{2} L^{dN}
u_N|y|^2} + K_N(\Lambda_N,y\mathbf{1})
ight) e^{-rac{L^{dN}}{2\mu^2}|y|^2} dy \end{split}$$

$$N = I^{-dN}/(\sum_{i} (\alpha_i)^2)$$

Finite-size susceptibility can be computed as the following:

$$Z_{g,\nu,N} \propto \lim_{\mu \to 0} \mathbb{E}^{\hat{\zeta}}[e^{-U_N}]$$
 with $\hat{\zeta} \sim \mathcal{N}(0, \mu^2 Q_N)$, and $\hat{\zeta} = Y'\mathbf{1}$ for $Y' \sim \mathcal{N}(0, \mu^2 L^{-dN})$,

$$\begin{split} Z_{g,\nu_c,N} &\propto \lim_{\mu \to 0} \int_{\mathbb{R}^n} (e^{-L^{dN}V_N(y)} + K_N(\Lambda_N,y\mathbf{1})) e^{-\frac{L^{dN}}{2\mu^2}|y|^2} dy \\ &= \lim_{\mu \to 0} \int_{\mathbb{R}^n} \left(e^{-\frac{1}{4}L^{dN}g_N|y|^4 - \frac{1}{2}L^{dN}\nu_N|y|^2} + K_N(\Lambda_N,y\mathbf{1}) \right) e^{-\frac{L^{dN}}{2\mu^2}|y|^2} dy \end{split}$$

$$\blacktriangleright \chi_{g,\nu,N} = L^{-dN} \langle (\sum_{x} \varphi_{x})^{2} \rangle_{g,\nu,N}$$

So likewise.

$$\chi_{g,\nu_c,N} = L^{dN} \lim_{\mu \to 0} \frac{\int_{\mathbb{R}^n} |y|^2 \left(e^{-\frac{1}{4}L^{dN}g_N|y|^4 - \frac{1}{2}L^{dN}\nu_N|y|^2} + K_N(\Lambda_N,y\mathbf{1})\right) e^{-\frac{L^{dN}}{2\mu^2}|y|^2} dy}{\int_{\mathbb{R}^n} \left(e^{-\frac{1}{4}L^{dN}g_N|y|^4 - \frac{1}{2}L^{dN}\nu_N|y|^2} + K_N(\Lambda_N,y\mathbf{1})\right) e^{-\frac{L^{dN}}{2\mu^2}|y|^2} dy}$$

$$\chi_{g,\nu_c,N} = L^{dN} \lim_{\mu \to 0} \frac{\int_{\mathbb{R}^n} |y|^2 \left(e^{-\frac{1}{4}L^{dN}g_N|y|^4 - \frac{1}{2}L^{dN}\nu_N|y|^2} + K_N(\Lambda_N,y\mathbf{1}) \right) dy}{\int_{\mathbb{R}^n} \left(e^{-\frac{1}{4}L^{dN}g_N|y|^4 - \frac{1}{2}L^{dN}\nu_N|y|^2} + K_N(\Lambda_N,y\mathbf{1}) \right) dy}$$

Main issues

- 1. Convergence of g_j
 - Requires refined control of the dynamical system
- 2. Integrability of K_i
 - Requires introduction of the Gaussian large field regulator

$$\chi_{g,\nu_c,N} = L^{dN} \lim_{\mu \to 0} \frac{\int_{\mathbb{R}^n} |y|^2 \left(e^{-\frac{1}{4} L^{dN} g_N |y|^4 - \frac{1}{2} L^{dN} \nu_N |y|^2} + K_N(\Lambda_N, y\mathbf{1}) \right) dy}{\int_{\mathbb{R}^n} \left(e^{-\frac{1}{4} L^{dN} g_N |y|^4 - \frac{1}{2} L^{dN} \nu_N |y|^2} + K_N(\Lambda_N, y\mathbf{1}) \right) dy}$$

Main issues

- 1. Convergence of g_i
 - Requires refined control of the dynamical system
- 2. Integrability of K_i
 - Requires introduction of the Gaussian large field regulator

$$\Rightarrow$$
 When $d \geq 5$, we have $g_N \rightarrow g_\infty > 0$ as $N \rightarrow \infty$, thus

$$\chi_{g,\nu_c,N} \sim g_{\infty}^{-1/2} L^{\frac{d}{2}N} = g_{\infty}^{-1/2} |\Lambda_N|^{1/2}.$$

Main issue 1: lower bound on g_j

We define the norm such that

$$\|g_j|\varphi|^4\| \simeq L^{-(d-4)j}g_j,$$

so $||V_j|| \to 0$ does *not* guarantee the convergence of g_j , so we need refined control on V_j . This requires higher order expansion of U_j as a local polynomial, i.e., we need V_j of form

$$V_{j,x}(\varphi) = \frac{1}{4}g_j|\varphi_x|^4 + \frac{1}{2}\nu_j|\varphi_x|^2 + \sum_{m_1} a_{m_1,j}\varphi_x \cdot \nabla^{m_1}\varphi_x + \sum_{m_2} c_{m_2,j}\varphi_x^3 \cdot \nabla^{m_2}\varphi_x,$$

and analyse the dynamical system $(g_j, \nu_j, a_{m_1,j}, c_{m_2,j})_{j \geq 0}$

Main issue 2: integrability of K_j

To obtain the torus scaling limit, we need integrability of K_j against a constant field on Λ_N . In order to obtain this, we require a Gaussian decay condition on K_j : there exits $\kappa > 0$ such that

$$|||K_j(X,\varphi)|||:=\left\|e^{\kappa g_j^{1/2}L^{dj/2}\sum_{x\in X}|\varphi_x|^2}K_j(X,\varphi)\right\|=O(\epsilon_j^3),$$

or equivalently

$$|K_j(X,\varphi)| \leq A(X)B(\nabla \varphi, \nabla^2 \varphi, \cdots)e^{-\kappa g_j^{1/2}L^{dj/2}\sum_{x\in X}|\varphi_x|^2}$$

for some set function A(X).

Thank you