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Finite-size scaling for a model of a magnet

For total magnetisation M = ZX Ox,

X = oo ((M2) — (1M)?)
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Finite-size scaling for a model of a magnet

For total magnetisation M = ZX Ox,

X = oo ((M2) — (1M)?)

2| o L=128 | » Height of the peak?
10 | — L=16,32,64 .
o =8 » Width of the peak?
» Shift of the critical point?
=< 10'F
10"

[Sandvik, Computational Studies of
Quantum Spin Systems]




Definitions and motivations



|#|* model

> Ay = {1,---,LN}9: d-dimensional lattice box (with periodic boundary condition)
> Qn ={¢: Ay — R"}: configuration space
» Coupling constants g >0, v € R

Definition
The |#|* model with coupling constants g, v is the probability measure on Qy given by

(F(®))gwn = zy— Ja, 40 F(9) exp (=3(¢, —A0) — 50 3, [éxl* — 38 Xy 1ox[*) -

» d >4 = d., the upper critical dimension
» When g < 1, then a weakly-coupled |$|*-model



|#|* model

1
Jo. dpF(¢)e 2($ A = 2y V(@) .
<F(¢)>g,u,N = = ZeoN . Vi) = §‘¢X‘2 + %|¢x’4

B g3
g=-v=2

V(x)

—g=v=1

» Under the limit g = —v — oo, converges to the O(n) model



f(L’MX),

Iim CN(fN, (f)) :?

N—oo

Infrared scaling limits
» Macroscopic scaling limit: for £ € C>°(R?), take f(x)

» Torus scaling limit: for f € C>(T9), take fy(x) = f(L=Nx),
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Gaussian scaling limits

BBS(14), ensemble

I

ch .
o |

AD-C(21), macroscopic  BBS('14), ensemble (or both)

N

» How are [BBS '14] and [AD-C '21] different?
» What is the torus scaling limit at the critical point?



Plateau: examples

Theorem [Liu, Panis, Slade '24]

For the Ising model in d > 4 in a system of size |A| = V and B, = . — c|A|7Y/2,

( > 1 n 1
000 = ——
09x/Bx«,\ |X|d72 V%
SN—— ~~
poly decay  plateau

Theorem [Liu, Slade '24]
1 n 1
Vi

For the lattice trees and animals in d > 8 in a system of size |A| = V and
Px = Pc — C|/\|_1/2'
IP)P*,/\(O A X) = ’X‘d_2



Plateau: examples

Theorem [Liu, Panis, Slade '24]

For the Ising model in d > 4 in a system of size [A| = V and B4 = Bc — c\/\|_1/2,

1 . 1
- 1
|x|d—2 va
poly decay  plateau

(000x) g, A X

Theorem [Liu, Slade '24]

For the lattice trees and animals in d > 8 in a system of size |[A| = V and pyx = p. — C\/\|71/2.

© ) 1 1
P X)X ——— + —5
Px s\ \x\d 2 \/i

Theorem [Hutchcroft, Michta, Slade '23]
For the Bernoulli percolation with d > 11 in a system of size |A| = V,
1 1
IP)pc,/\(o < X) =

T v



Plateau: Bernoulli percolation
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Main results



Critical point of the |¢|* model, d > 4

» Natural injection iy : Ay — T¢

> fc C®(TY R"), let fy : Ay — R” be the discretisation given
fu(x) = f(in(x))/IAn|

> f= [ f(x)dx, f’V_I/\IZ fn(x)



Critical point of the |¢|* model, d > 4

» Natural injection iy : Ay — T¢

> fc C®(TY R"), let fy : Ay — R” be the discretisation given
fu(x) = f(in(x))/IAn|

> f= [ f(x)dx, f’V_I/\IZ fn(x)

Theorem (BBS'14 for d = 4, P'25" for d > 5)

Let d > 4, g be sufficiently small. Then there exist v. = v.(g) such that, for some
sequence (e, €,) — (0,0),

lim <e(¢,fN)/LNd/z>

N—oo

s = WN [l O0] = exp (;,k(f ).

» WN is the White noise measure on T¢, i.e., absence of long range order



Critical point of the |¢|* model, d > 4

Theorem (BBS'14 for d = 4, P'25 for d > 5)
Let d > 4, g be sufficiently small. Then there exist v. = v.(g) such that, for some sequence
(€xs €k) = (0,0),

lim <e(¢,f~)/LNd/2>

N— oo

The finite-volume susceptibility is defined as xz,., n = %((Z b)) gwN-

Corollary
Under the same assumptions, Xg .00 = liMN_00 Xg,v,N €XiSts and

1
Xgweteoo = o7 = 00 as ex — 0.

k



Critical point of the |¢|* model, d > 4

Corollary
Under the same assumptions, Xg .00 = liMyn_00 Xg,v,N €XiSts and

1
Xg,veter,00 = o — 00 as ex — 0.
k




Torus scaling limit of |¢|* model, d > 5

Theorem (P'25T)

Let d > 5, g be sufficiently small, by = g~ Y*L=9N/* and cy = L—2N,
1. There exists v =1+ O(g) > 0 such that

' (¢,fn)/ b — Y(1,f) vyf o=lyl*

lim <e >g’ych Q [e } x /e e dy.

N—o0

2. There exists =1+ O(g) > 0 such that

lim <e(¢,(fofN)>/cN>

N—oo

= GFFo [#(F-)].
gve,N



d>5

Torus scaling limit of |$|* model,

Theorem (P'25T)
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Torus scaling limit of |¢|* model, d > 5

Theorem (P'25T)
by = g Y4L=dN/* and ¢y = L=55N,
L limposo (el®M)/EV) = Q[ o [evfedy.

2 liMp_e <e(¢>,fN—FN)/CN> _ GFF, [eﬁ(w,f—F)]

g7VC7N
Interpretation

> IfY ~ “e“y|4”, then Y1 ~ Q.

» Thus on a finite-volume torus,
" ~" vbyY1l+ BeyGFF,

» Since by > cp, we see that there is a scale hierarchy where ¢ is constant on the
scale of the torus and the GFF on microscopic scales.



Torus scaling limit of \<b|4 model, d =4

Theorem (P'25T)
Let d = 4, g be sufficiently small, by = NY*L=N and cy = L=N.
1. There exists v > 0, independent of g, such that

lim <e(¢,f/v)/b/v> -Q [e'v(wf)} o< /ew-felf‘dy.
gve,N

N—oo

2. There exists 3 =1+ O(g) > 0 such that

lim <e(¢’(fN_FN))/CN >

N—o0

— GFF, [eﬂ(w—f)] .

g7VC7N



Comparison with previous results

» Macroscopic scaling limit

= 1: Aizenman, Duminil-Copin('21), Frohlich('81),

» Gaussian limit in d > 4 and n

Aizenman('82)

» Torus scaling limit

» Scale hierarchy ¢ “ ~" by Y1+ cyGFF

» Weakly coupled, any n > 1

» Competition between the ‘plateau effect’ and the Gaussian limit
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Comparison with previous results

With by = NY4L=N for d = 4, by = g~ Y/4L=N/4 for d > 4 ¢y = L=*3°N), suppose

" =" ~vbyY1+ BcyGFF

Corollary (Macroscopic limit for )
For f € C°(RY), let fM(x) = f(LMx). Then

lim lim <eLM(W)/CN>=exp (%B(f,(—A)*lf)).

N—oo M—o00



Comparison with previous results

With by = NY4L=N for d = 4, by = g~ Y/4L=N/4 for d > 4 ¢y = L=*3°N), suppose

" =" ~vbyY1+ BcyGFF

Corollary (Macroscopic limit for )
For f € C°(RY), let fM(x) = f(LMx). Then

lim lim <eLM(W)/CN>=exp <%B(f,(—A)*1f)).

N—oo M—o00

» Gives an covariance structure of the macroscopic scaling limit

» We did not prove that ¢ “ ~" vby Y1 + ScyGFF is uniform in M, but expected
to be true.



Plateau

Theorem [Park, 25%]
Let d >4, g > 0and v = vc(g).

d
> If [xy| — oo with |xy| < 1221V then

<¢0¢xm>g,u ~

C1
d—2

d XN
> If |xn| > 122" then bl

<¢0¢)XN>g,V ~ C2g71/4LidN/2

Theorem [Park, 25+]
Let d =4, g >0and v =v.(g).
d
> If [xy| — oo with |xy| < N=4L2@2 " then
<¢O¢Xm>g,l/ ~

> If [xy| > N*%Lz(dd*Z)N, then
<¢0¢xm>g,y ~ C2N1/2L7dN/2

1
‘XN‘d_Q



Plateau

Theorem [Park, 25%, d > 4]

d
> If |xn| = oo with |[xy| < 122" then
a
J (P0Psn) g ~ x| 92
> If | xpn| > 122" then

<¢0¢XN>g,1/ ~ C2g_1/4L_dN/2
Ay
Shows a plateau:
d
(1) Lz@a" « (N
(2) cog=*1L-9N/2 is a constant
Plateau

1/]x|47?




Conjectures/Prospectives

Related results:

» Presence of the critical window and a scaling profile

The same picture would hold models in the same universality class:

1. O(n) lattice spin models in d > 4 (n = 1: Ising model, n = 2: XY model, n = 3:
Heisenberg model)

2. (Strictly or weakly) Self-avoiding walks

There is a problem with the boundary condition:
» Occurrence of the pseudocritical point under FBC

» Appearance of the same scaling profile about the pseudocritical point, just with
different constants



Case of convex potentials



Spin systems with convex potential

> Ay = {1,---,LN}9: d-dimensional lattice box (with periodic boundary condition)
» Qn ={¢: Ay — R"}: configuration space (For convenience, n = 1)
» Convex function W : R" — R

Definition
We define the spin system with potential W as a probability measure on Qp given by

(F(@))wn =z Ja, 9 F(¢)exp (=3(6, — D) = W(0)) [T do, ¢ € Qw.




Methods for convex potentials

A corollary of the Prékopa—Leindler inequality
If D2S > 0 and p is some probability measure, then 1 % e~ is log-concave, i.e., if ¢ ~ y, then

o> —logule I peqy
is a convex function.

Brascamp-Lieb inequality

If W is even and D?2W/(¢) > Q > 0 for a quadratic form Q, uniformly in ¢, then for any
he QN,

<e(h’¢)>W,N < exp (%(h, (—A + Q)flh)>

> In particular, if g, > 0, then the BL inequality implies (¢o¢x)g1.00 < O(e™HX1).

» More detailed information can be obtained by Helffer-Sjorstrand representation



RG method



Idea of renormalisation group

e oo oo oje offe ole ofe se o

CLT and RG:
> Let (Xy)n>0 beiid., E[X2] =1, E[X,] =0, X, ~ e""(X)/Z,, considered as ‘spin
chain’
> Let Vi = (Xopii1+ - + X(nr1)21)/2, then

Vin~ e /2= (/2,7

» According to the CLT, vj(x) — %x2 as j — 0o, so averaged field improves
convexity.
» Reflecting on the proof of the CLT, this process can be shown inductively.



Reformulation using Gaussian integral

Sy, dBF(9)e™ (@206~ Tu e(9)
N

<F(¢)>g,u,N = ZgoN s Vx(¢) = %‘(ﬁxlz + %|¢x|4

B; = set of boxes of LJ points = set of j-boxes




Reformulation using Gaussian integral

f d¢F(¢)e—%(¢,—A¢)e* Sx Vx(o) y
(F(@)gm = 22O L Vel9) = Slnl? + £l

B; = set of boxes of LJ points = set of j-boxes

» Step 1: Regroup lattice field ¢(B) = (¢x)xep for each block B € B;, compute the
law of each ¢(B)



Reformulation using Gaussian integral

f d¢F(¢)e—%(¢,—A¢)e* x Vx(o) y
(F(@)gm = 22O L Vel9) = Slnl? + £l

B; = set of boxes of LJ points = set of j-boxes

» Step 1: Regroup lattice field ¢(B) = (¢x)xep for each block B € B;, compute the
law of each ¢(B)

> Step 2: Compute the j-scale interaction of (¢(B))gep; that replaces (¢, —A¢)



Reformulation using Gaussian integral

O~ NO, A+ = Zguw o lim B 2 A09)]
—

Lemma
Suppose (1 ~ N (0, (1), (2 ~ N(0, Gy) are independent. Then
1+ Q¢ NN(O, G+ Cg)



Reformulation using Gaussian integral

O~ NO, A+ = Zguw o lim B 2 A09)]
—

Lemma
Suppose (1 ~ N (0, (1), (2 ~ N(0, Gy) are independent. Then
1+ Q¢ NN(O, G+ Cg)

» Suppose there exist 1, -+, [y such that

(—A+ p?)~ ZI’ +u?

and ¢j ~ N(0,T;) is the ‘scale j fluctuation’ of the massive GFF. Let
C ~ N(07 M_zQN)-



Reformulation using Gaussian integral

O~ NO, A+ = Zguw o lim B 2 A09)]
—

Lemma
Suppose (1 ~ N (0, (1), (2 ~ N(0, Gy) are independent. Then
1+ Q¢ NN(O, G+ Cg)

» Suppose there exist 1, -+, [y such that

(= + %)~ ZI’ +u?

and ¢j ~ N(0,T;) is the ‘scale j fluctuation’ of the massive GFF. Let
C ~ N(07 M_zQN)
» By the lemma, (1 +--- +(n —|—C =9 %, so

; (pin .. ws _ e
Zg o Jim BCESY - B [exp(= D ValGu -+ + G + )



Renormalised potential

Given (Cj)szl ~NO,T1 @ ®Fy) with 3°.T; = (=A+ p?) 1,
Zgon = l[iﬁ)noECAECN . ES [exp(— Z V(G + -+ )]

» For each j, the renormalised potential is defined as a partial expectation

e U =BG EG [exp(= Y Vil + Gt 4+ )



Renormalised potential

Given (Cj)szl ~NO,T1 @ ®Fy) with 3°.T; = (=A+ p?) 1,
Zgon = A@OECAECN . ES [exp(— Z V(G + -+ )]

» For each j, the renormalised potential is defined as a partial expectation

e U — B BS [ exp(— Y Valp+ G+ )]

= ZguN = J@OEC ESN ... ES+1 [eXP(—Uj(CjH 4oy + C))]

scale j interaction

scale j potential function



Renormalised potential

e U) —EG .. EG [ exp(— S V(b Gt ot Cj))]

$(B)
I Interaction [,y + - + Iy

$(B)




Renormalised potential

e U =BG B exp(= Y Vil + G+ + Q)]

$(B)
I Interaction [,y + - + Iy

$(B)

Goal: Approximate U; using ‘local’ polynomials
1 1
Uj(@) = ujlAn] + 3 Svjlon® + Zgiloxl* + -
X

and analyse the stability of the dynamical system (u;, v}, g);>0.



Renormalised potential

Theorem

If v = v, there exists vacuum energy uj, a ‘local” polynomial V;(y) and a collection of
smooth function (K;(X) : X C B;) such that

e Uil9) = emulN g Zu Vinl® gxp(K;)(¢)
and
1Vill = O(e)), 1Kl = O(&})

for some €; — 0 and suitable norms on function spaces.

» V;is a low order approximation of U; as a local polynomial

» K; is a remainder term and Exp is a cluster expansion of scale j polymers given by



Finite-size susceptibility and the effective potential

Finite-size susceptibility can be computed as the following:

> Zg,n o< limy, o ECA[e*UN] with wa(O,/ﬁQN), and CA: Y’'1 for
Y ~ N(O,,LL2L_dN),

_dN, 2
Zg ye,n o lim / (e_LdNVN(Y) + Kn(An, y1))e 22 v dy
RI‘I

n—0
LdN

L _ 2
:;ILiLnO/R (ef%LngNM‘L%Ld’VVNIyIz_|_KN(/\N7y1))e A dy



Finite-size susceptibility and the effective potential

Finite-size susceptibility can be computed as the following:

> Zg,u,N S8 “m,u—>0 IE‘fCA[eiuN] with é}N N(O,,U,ZQN), and é\: Y’1 for
Y ~ N(O,H2L_dN),

_IV o
Zg,ve,N X “m/ (e " W) 4 Kyy(An, y1))e 22" dy
sYes /14*)0 ,
. 1,dN 4_1ydN 2 —LdN‘y|2
- I'm/ (e~ atTenb P =3 LTunly® 4y (A, y1)) e 22 dy
NHO Rn

> Xgwn = LT o)D) gun



Finite-size susceptibility and the effective potential

Finite-size susceptibility can be computed as the following:

> Zg,n o< limy, o ECA[e*UN] with fw/\/’(O,/ﬁQN), and CA: Y’'1 for
Y ~ N(O,,LL2L_dN),

_dN, 2
Zg ye,n o lim / (e_LdNVN(Y) + Kn(An, y1))e 22 v dy

n—0
1,dN 4_1;dN 2 _ﬂ\yﬁ
= Iim/ (emat gnly[* =3 L% vnly] + Kn(An,y1))e 2277 dy
,LL*)O Rn

> Xewn = LN, 0D g
» So likewise,

_1ydn 4_15dN 2 LN 2
_ AN i Jan ly[2 (e a - en P =2 LTy 4y (A, y1)) e 22 gy

Xg.ve,N dN
p—0 _1lydn 4_1dn 2 -SSy?
Jrn (€72 euly*=aL Tl + Kn(An,yl))e 227 dy



Finite-size susceptibility and the effective potential

_ LN fiy S y[2 (e st el P =3ty gy (A, 1)) dy
B0 [, (e EE a4 Ky (A, y1)) dy

Xg,ve,N

Main issues
1. Convergence of g;
- Requires refined control of the dynamical system
2. Integrability of K;
- Requires introduction of the Gaussian large field regulator



Finite-size susceptibility and the effective potential

_1,dN 4_17dN 2
_ oy JenyPemd enly P =2 Ly ® 4 Ky (A, y1)) dy
B0 [, (e EE a4 Ky (A, y1)) dy

Xg,ve,N

Main issues
1. Convergence of g;
- Requires refined control of the dynamical system
2. Integrability of K;
- Requires introduction of the Gaussian large field regulator

= When d > 5, we have gy — g > 0 as N — oo, thus

_ d _
XeweN ~ 8/ 2L2N = g 2| Ay |2,



Main issue 1: lower bound on g;

We define the norm such that

lgilel*ll = L=,

so ||Vj|| = 0 does not guarantee the convergence of gj, so we need refined control on
Vj. This requires higher order expansion of U; as a local polynomial, i.e., we need V; of
form
1 1
Vix(p) = Zgj|90><|4 + §Vj|‘10X|2

+ D amjox s V™x+ Y m i VP

my m2

and analyse the dynamical system (gj, v}, am, j; Cm,.j)j>0



Main issue 2: integrability of K;

To obtain the torus scaling limit, we need integrability of K; against a constant field on
An. In order to obtain this, we require a Gaussian decay condition on Kj: there exits
k > 0 such that

1/2, 4i
e’igj Ldj/2 ZXGX “px|2l.<j(X7 SO)H = 0(63),

GO = |

or equivalently

1/2dj/2

IKi(X, 0)| < AX)B(Vp, V2, )e &

ngx |S0><‘2

for some set function A(X).



Thank you



